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CHAPTER 1

INTRODUCTION

SWAT is the acronym for Soil and Water Assessment Tool, a river

basin, or watershed, scale model developed by Dr. Jeff Arnold for the USDA

Agricultural Research Service (ARS). SWAT was developed to predict the impact

of land management practices on water, sediment and agricultural chemical yields

in large complex watersheds with varying soils, land use and management

conditions over long periods of time. To satisfy this objective, the model

♦  is physically based. Rather than incorporating regression equations to

describe the relationship between input and output variables, SWAT

requires specific information about weather, soil properties,

topography, vegetation, and land management practices occurring in

the watershed. The physical processes associated with water
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movement, sediment movement, crop growth, nutrient cycling, etc. are

directly modeled by SWAT using this input data.

Benefits of this approach are

♦  watersheds with no monitoring data (e.g. stream gage
data) can be modeled

♦  the relative impact of alternative input data (e.g.
changes in management practices, climate,
vegetation, etc.) on water quality or other variables
of interest can be quantified

♦  uses readily available inputs. While SWAT can be used to study more

specialized processes such as bacteria transport, the minimum data

required to make a run are commonly available from government

agencies.

♦  is computationally efficient. Simulation of very large basins or a

variety of management strategies can be performed without excessive

investment of time or money.

♦  enables users to study long-term impacts. Many of the problems

currently addressed by users involve the gradual buildup of pollutants

and the impact on downstream water bodies. To study these types of

problems, results are needed from runs with output spanning several

decades.

SWAT is a continuous time model, i.e. a long-term yield model. The

model is not designed to simulate detailed, single-event flood routing.
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1.1 DEVELOPMENT OF SWAT

SWAT incorporates features of several ARS models and is a direct

outgrowth of the SWRRB1 model (Simulator for Water Resources in Rural

Basins) (Williams et al., 1985; Arnold et al., 1990). Specific models that

contributed significantly to the development of SWAT were CREAMS2

(Chemicals, Runoff, and Erosion from Agricultural Management Systems)

(Knisel, 1980), GLEAMS3 (Groundwater Loading Effects on Agricultural

Management Systems) (Leonard et al., 1987), and EPIC4 (Erosion-Productivity

Impact Calculator) (Williams et al., 1984).

Development of SWRRB began with modification of the daily rainfall

hydrology model from CREAMS. The major changes made to the CREAMS

hydrology model were: a) the model was expanded to allow simultaneous

computations on several subbasins to predict basin water yield; b) a groundwater

or return flow component was added; c) a reservoir storage component was added

to calculate the effect of farm ponds and reservoirs on water and sediment yield;

d) a weather simulation model incorporating data for rainfall, solar radiation, and

temperature was added to facilitate long-term simulations and provide temporally

and spatially representative weather; e) the method for predicting the peak runoff

rates was improved; f) the EPIC crop growth model was added to account for

annual variation in growth; g) a simple flood routing component was added; h)

sediment transport components were added to simulate sediment movement

                                                          
1 SWRRB is a continuous time step model that was developed to simulate nonpoint source
loadings from watersheds.
2 In response to the Clean Water Act, ARS assembled a team of interdisciplinary scientists from
across the U.S. to develop a process-based, nonpoint source simulation model in the early 1970s.
From that effort CREAMS was developed. CREAMS is a field scale model designed to simulate
the impact of land management on water, sediment, nutrients and pesticides leaving the edge of the
field. A number of other ARS models such as GLEAMS, EPIC, SWRRB and AGNPS trace their
origins to the CREAMS model.
3 GLEAMS is a nonpoint source model which focuses on pesticide and nutrient groundwater
loadings.
4 EPIC was originally developed to simulate the impact of erosion on crop productivity and has
now evolved into a comprehensive agricultural management, field scale, nonpoint source loading
model.
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through ponds, reservoirs, streams and valleys; and i) calculation of transmission

losses was incorporated.

The primary focus of model use in the late 1980s was water quality

assessment and development of SWRRB reflected this emphasis. Notable

modifications of SWRRB at this time included: a) incorporation of the GLEAMS

pesticide fate component; b) optional SCS technology for estimating peak runoff

rates; and c) newly developed sediment yield equations. These modifications

extended the model’s capability to deal with a wide variety of watershed

management problems.

In the late 1980s, the Bureau of Indian Affairs needed a model to estimate

the downstream impact of water management within Indian reservation lands in

Arizona and New Mexico. While SWRRB was easily utilized for watersheds up

to a few hundred square kilometers in size, the Bureau also wanted to simulate

stream flow for basins extending over several thousand square kilometers. For an

area this extensive, the watershed under study needed to be divided into several

hundred subbasins. Watershed division in SWRRB was limited to ten subbasins

and the model routed water and sediment transported out of the subbasins directly

to the watershed outlet. These limitations led to the development of a model

called ROTO (Routing Outputs to Outlet) (Arnold et al., 1995), which took output

from multiple SWRRB runs and routed the flows through channels and reservoirs.

ROTO provided a reach routing approach and overcame the SWRRB subbasin

limitation by “linking” multiple SWRRB runs together. Although this approach

was effective, the input and output of multiple SWRRB files was cumbersome

and required considerable computer storage. In addition, all SWRRB runs had to

be made independently and then input to ROTO for the channel and reservoir

routing. To overcome the awkwardness of this arrangement, SWRRB and ROTO

were merged into a single model, SWAT. While allowing simulations of very

extensive areas, SWAT retained all the features which made SWRRB such a

valuable simulation model.
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Since SWAT was created in the early 90s, it has undergone continued

review and expansion of capabilities. The most significant improvements of the

model between releases include:

♦  SWAT94.2: Multiple hydrologic response units (HRUs) incorporated.

♦  SWAT96.2: Auto-fertilization and auto-irrigation added as

management options; canopy storage of water incorporated; a CO2

component added to crop growth model for climatic change studies;

Penman-Monteith potential evapotranspiration equation added; lateral

flow of water in the soil based on kinematic storage model

incorporated; in-stream nutrient water quality equations from

QUAL2E added; in-stream pesticide routing.

♦  SWAT98.1: Snow melt routines improved; in-stream water quality

improved; nutrient cycling routines expanded; grazing, manure

applications, and tile flow drainage added as management options;

model modified for use in Southern Hemisphere.

♦  SWAT99.2:  Nutrient cycling routines improved, rice/wetland routines

improved, reservoir/pond/wetland nutrient removal by settling added;

bank storage of water in reach added; routing of metals through reach

added; all year references in model changed from last 2 digits of year

to 4-digit year; urban build up/wash off equations from SWMM added

along with regression equations from USGS.

♦  SWAT2000: Bacteria transport routines added; Green & Ampt

infiltration added; weather generator improved; allow daily solar

radiation, relative humidity, and wind speed to be read in or generated;

allow potential ET values for watershed to be read in or calculated; all

potential ET methods reviewed; elevation band processes improved;

enabled simulation of unlimited number of reservoirs; Muskingum

routing method added; modified dormancy calculations for proper

simulation in tropical areas.
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In addition to the changes listed above, interfaces for the model have been

developed in Windows (Visual Basic), GRASS, and ArcView. SWAT has also

undergone extensive validation.

1.2 OVERVIEW OF SWAT

SWAT allows a number of different physical processes to be simulated in

a watershed. These processes will be briefly summarized in this section. For more

detailed discussions of the various procedures, please consult the chapter devoted

to the topic of interest.

.

For modeling purposes, a watershed may be partitioned into a number of

subwatersheds or subbasins. The use of subbasins in a simulation is particularly

beneficial when different areas of the watershed are dominated by land uses or

Figure 1.1: Map of the Lake Fork Watershed in Northeast Texas showing the land
use distribution and stream network
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soils dissimilar enough in properties to impact hydrology. By partitioning the

watershed into subbasins, the user is able to reference different areas of the

watershed to one another spatially. Figure 1.2 shows a subbasin delineation for the

watershed shown in Figure 1.1.

Input information for each subbasin is grouped or organized into the

following categories: climate; hydrologic response units or HRUs;

ponds/wetlands; groundwater; and the main channel, or reach, draining the

subbasin. Hydrologic response units are lumped land areas within the subbasin

that are comprised of unique land cover, soil, and management combinations.

No matter what type of problem studied with SWAT, water balance is the

driving force behind everything that happens in the watershed. To accurately

predict the movement of pesticides, sediments or nutrients, the hydrologic cycle as

Figure 1.2: Subbasin delineation of the Lake Fork Watershed.



8 SWAT USER’S MANUAL, VERSION 2000

simulated by the model must conform to what is happening in the watershed.

Simulation of the hydrology of a watershed can be separated into two major

divisions. The first division is the land phase of the hydrologic cycle, depicted in

Figure 1.3. The land phase of the hydrologic cycle controls the amount of water,

sediment, nutrient and pesticide loadings to the main channel in each subbasin.

The second division is the water or routing phase of the hydrologic cycle which

can be defined as the movement of water, sediments, etc. through the channel

network of the watershed to the outlet.

Figure 1.3: Schematic representation of the hydrologic cycle.
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1.2.1  LAND PHASE OF THE HYDROLOGIC CYCLE

The hydrologic cycle as simulated by SWAT is based on the water balance

equation:

)(
1

0 gwseepasurfday

t

i
t QwEQRSWSW −−−−+= �

=

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water

content on day i (mm H2O), t is the time (days), Rday is the amount of precipitation

on day i (mm H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is

the amount of evapotranspiration on day i (mm H2O), wseep is the amount of water

entering the vadose zone from the soil profile on day i (mm H2O), and Qgw is the

amount of return flow on day i (mm H2O).

The subdivision of the watershed enables the model to reflect differences

in evapotranspiration for various crops and soils. Runoff is predicted separately

for each HRU and routed to obtain the total runoff for the watershed. This

increases accuracy and gives a much better physical description of the water

balance.

Figure 1.4: HRU/Subbasin command loop
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Figure 1.4 shows the general sequence of processes used by SWAT to

model the land phase of the hydrologic cycle. The different inputs and processes

involved in this phase of the hydrologic cycle are summarized in the following

sections.

1.2.1.1 CLIMATE

The climate of a watershed provides the moisture and energy inputs that

control the water balance and determine the relative importance of the different

components of the hydrologic cycle.

The climatic variables required by SWAT consist of daily precipitation,

maximum/minimum air temperature, solar radiation, wind speed and relative

humidity. The model allows values for daily precipitation, maximum/minimum

air temperatures, solar radiation, wind speed and relative humidity to be input

from records of observed data or generated during the simulation.

WEATHER GENERATOR. Daily values for weather are generated from average
monthly values. The model generates a set of weather data for each subbasin. The
values for any one subbasin will be generated independently and there will be no
spatial correlation of generated values between the different subbasins.

GENERATED PRECIPITATION. SWAT uses a model developed by Nicks
(1974) to generate daily precipitation for simulations which do not read in
measured data. This precipitation model is also used to fill in missing data
in the measured records. The precipitation generator uses a first-order
Markov chain model to define a day as wet or dry by comparing a random
number (0.0-1.0) generated by the model to monthly wet-dry probabilities
input by the user. If the day is classified as wet, the amount of precipitation
is generated from a skewed distribution or a modified exponential
distribution.

GENERATED AIR TEMPERATURE AND SOLAR RADIATION. Maximum and
minimum air temperatures and solar radiation are generated from a normal
distribution. A continuity equation is incorporated into the generator to
account for temperature and radiation variations caused by dry vs. rainy
conditions. Maximum air temperature and solar radiation are adjusted
downward when simulating rainy conditions and upwards when simulating
dry conditions. The adjustments are made so that the long-term generated
values for the average monthly maximum temperature and monthly solar
radiation agree with the input averages.
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GENERATED WIND SPEED. A modified exponential equation is used to
generate daily mean wind speed given the mean monthly wind speed.

GENERATED RELATIVE HUMIDITY. The relative humidity model uses a
triangular distribution to simulate the daily average relative humidity from
the monthly average. As with temperature and radiation, the mean daily
relative humidity is adjusted to account for wet- and dry-day effects.

SNOW. SWAT classifies precipitation as rain or freezing rain/snow using
the average daily temperature.

SNOW COVER. The snow cover component of SWAT has been updated
from a simple, uniform snow cover model to a more complex model which
allows non-uniform cover due to shading, drifting, topography and land
cover. The user defines a threshold snow depth above which snow
coverage will always extend over 100% of the area. As the snow depth in a
subbasin decreases below this value, the snow coverage is allowed to
decline non-linearly based on an areal depletion curve.

SNOW MELT. Snow melt is controlled by the air and snow pack
temperature, the melting rate, and the areal coverage of snow. If snow is
present, it is melted on days when the maximum temperature exceeds 0°C
using a linear function of the difference between the average snow pack-
maximum air temperature and the base or threshold temperature for snow
melt. Melted snow is treated the same as rainfall for estimating runoff and
percolation. For snow melt, rainfall energy is set to zero and the peak
runoff rate is estimated assuming uniformly melted snow for a 24 hour
duration.

ELEVATION BANDS. The model allows the subbasin to be split into a
maximum of ten elevation bands. Snow cover and snow melt are
simulated separately for each elevation band. By dividing the subbasin into
elevation bands, the model is able to assess the differences in snow cover
and snow melt caused by orographic variation in precipitation and
temperature.

SOIL TEMPERATURE. Soil temperature impacts water movement and the decay
rate of residue in the soil. Daily average soil temperature is calculated at the soil
surface and the center of each soil layer. The temperature of the soil surface is a
function of snow cover, plant cover and residue cover, the bare soil surface
temperature, and the previous day’s soil surface temperature. The temperature of a
soil layer is a function of the surface temperature, mean annual air temperature
and the depth in the soil at which variation in temperature due to changes in
climatic conditions no longer occurs. This depth, referred to as the damping depth,
is dependent upon the bulk density and the soil water content.
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1.2.1.2 HYDROLOGY

As precipitation descends, it may be intercepted and held in the vegetation

canopy or fall to the soil surface.  Water on the soil surface will infiltrate into the

soil profile or flow overland as runoff. Runoff moves relatively quickly toward a

stream channel and contributes to short-term stream response. Infiltrated water

may be held in the soil and later evapotranspired or it may slowly make its way to

the surface-water system via underground paths. The potential pathways of water

movement simulated by SWAT in the HRU are illustrated in Figure 1.5.

CANOPY STORAGE. Canopy storage is the water intercepted by vegetative
surfaces (the canopy) where it is held and made available for evaporation.  When
using the curve number method to compute surface runoff, canopy storage is
taken into account in the surface runoff calculations. However, if methods such as
Green & Ampt are used to model infiltration and runoff, canopy storage must be
modeled separately. SWAT allows the user to input the maximum amount of
water that can be stored in the canopy at the maximum leaf area index for the land
cover. This value and the leaf area index are used by the model to compute the
maximum storage at any time in the growth cycle of the land cover/crop. When
evaporation is computed, water is first removed from canopy storage.

INFILTRATION. Infiltration refers to the entry of water into a soil profile
from the soil surface. As infiltration continues, the soil becomes increasingly wet,
causing the rate of infiltration to decrease with time until it reaches a steady value.
The initial rate of infiltration depends on the moisture content of the soil prior to
the introduction of water at the soil surface. The final rate of infiltration is
equivalent to the saturated hydraulic conductivity of the soil. Because the curve
number method used to calculate surface runoff operates on a daily time-step, it is
unable to directly model infiltration. The amount of water entering the soil profile
is calculated as the difference between the amount of rainfall and the amount of
surface runoff. The Green & Ampt infiltration method does directly model
infiltration, but it requires precipitation data in smaller time increments.

REDISTRIBUTION. Redistribution refers to the continued movement of water
through a soil profile after input of water (via precipitation or irrigation) has
ceased at the soil surface. Redistribution is caused by differences in water content
in the profile. Once the water content throughout the entire profile is uniform,
g
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redistribution will cease. The redistribution component of SWAT uses a storage
routing technique to predict flow through each soil layer in the root zone.
Downward flow, or percolation, occurs when field capacity of a soil layer is
exceeded and the layer below is not saturated. The flow rate is governed by
the saturated conductivity of the soil layer. Redistribution is affected by soil
temperature. If the temperature in a particular layer is 0°C or below, no
redistribution is allowed from that layer.

EVAPOTRANSPIRATION. Evapotranspiration is a collective term for all
processes by which water in the liquid or solid phase at or near the earth's surface
becomes atmospheric water vapor. Evapotranspiration includes evaporation from
rivers and lakes, bare soil, and vegetative surfaces; evaporation from within the
leaves of plants (transpiration); and sublimation from ice and snow surfaces. The
model computes evaporation from soils and plants separately as described by
Ritchie (1972). Potential soil water evaporation is estimated as a function of
potential evapotranspiration and leaf area index (area of plant leaves relative to
the area of the HRU). Actual soil water evaporation is estimated by using
exponential functions of soil depth and water content. Plant transpiration is
simulated as a linear function of potential evapotranspiration and leaf area index.

POTENTIAL EVAPOTRANSPIRATION. Potential evapotranspiration is the
rate at which evapotranspiration would occur from a large area completely
and uniformly covered with growing vegetation which has access to an
unlimited supply of soil water. This rate is assumed to be unaffected by
micro-climatic processes such as advection or heat-storage effects. The
model offers three options for estimating potential evapotranspiration:
Hargreaves (Hargreaves et al., 1985), Priestley-Taylor (Priestley and
Taylor, 1972), and Penman-Monteith (Monteith, 1965).

LATERAL SUBSURFACE FLOW. Lateral subsurface flow, or interflow, is
streamflow contribution which originates below the surface but above the zone
where rocks are saturated with water. Lateral subsurface flow in the soil profile
(0-2m) is calculated simultaneously with redistribution. A kinematic storage
model is used to predict lateral flow in each soil layer. The model accounts for
variation in conductivity, slope and soil water content.

SURFACE RUNOFF. Surface runoff, or overland flow, is flow that occurs along a
sloping surface. Using daily or subdaily rainfall amounts, SWAT simulates
surface runoff volumes and peak runoff rates for each HRU.

SURFACE RUNOFF VOLUME is computed using a modification of the SCS
curve number method (USDA Soil Conservation Service, 1972) or the
Green & Ampt infiltration method (Green and Ampt, 1911). In the curve
number method, the curve number varies non-linearly with the moisture
content of the soil. The curve number drops as the soil approaches the
wilting point and increases to near 100 as the soil approaches saturation.
The Green & Ampt method requires sub-daily precipitation data and
calculates infiltration as a function of the wetting front matric potential
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and effective hydraulic conductivity. Water that does not infiltrate
becomes surface runoff. SWAT includes a provision for estimating runoff
from frozen soil where a soil is defined as frozen if the temperature in the
first soil layer is less than 0°C. The model increases runoff for frozen soils
but still allows significant infiltration when the frozen soils are dry.

PEAK RUNOFF RATE predictions are made with a modification of the
rational method. In brief, the rational method is based on the idea that if a
rainfall of intensity i begins instantaneously and continues indefinitely, the
rate of runoff will increase until the time of concentration, tc, when all of
the subbasin is contributing to flow at the outlet. In the modified Rational
Formula, the peak runoff rate is a function of the proportion of daily
precipitation that falls during the subbasin tc, the daily surface runoff
volume, and the subbasin time of concentration. The proportion of rainfall
occurring during the subbasin tc is estimated as a function of total daily
rainfall using a stochastic technique. The subbasin time of concentration is
estimated using Manning’s Formula considering both overland and
channel flow.

PONDS. Ponds are water storage structures located within a subbasin which
intercept surface runoff. The catchment area of a pond is defined as a fraction of
the total area of the subbasin. Ponds are assumed to be located off the main
channel in a subbasin and will never receive water from upstream subbasins. Pond
water storage is a function of pond capacity, daily inflows and outflows, seepage
and evaporation. Required inputs are the storage capacity and surface area of the
pond when filled to capacity. Surface area below capacity is estimated as a non-
linear function of storage.

TRIBUTARY CHANNELS. Two types of channels are defined within a
subbasin: the main channel and tributary channels. Tributary channels are minor
or lower order channels branching off the main channel within the subbasin. Each
tributary channel within a subbasin drains only a portion of the subbasin and does
not receive groundwater contribution to its flow. All flow in the tributary channels
is released and routed through the main channel of the subbasin. SWAT uses the
attributes of tributary channels to determine the time of concentration for the
subbasin.

TRANSMISSION LOSSES. Transmission losses are losses of surface
flow via leaching through the streambed. This type of loss occurs in
ephemeral or intermittent streams where groundwater contribution occurs
only at certain times of the year, or not at all. SWAT uses Lane’s method
described in Chapter 19 of the SCS Hydrology Handbook (USDA Soil
Conservation Service, 1983) to estimate transmission losses. Water losses
from the channel are a function of channel width and length and flow
duration. Both runoff volume and peak rate are adjusted when
transmission losses occur in tributary channels.
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RETURN FLOW. Return flow, or base flow, is the volume of streamflow
originating from groundwater. SWAT partitions groundwater into two aquifer
systems: a shallow, unconfined aquifer which contributes return flow to streams
within the watershed and a deep, confined aquifer which contributes return flow
to streams outside the watershed (Arnold et al., 1993). Water percolating past the
bottom of the root zone is partitioned into two fractions—each fraction becomes
recharge for one of the aquifers. In addition to return flow, water stored in the
shallow aquifer may replenish moisture in the soil profile in very dry conditions or
be directly removed by plant. Water in the shallow or deep aquifer may be
removed by pumping.

1.2.1.3 LAND COVER/PLANT GROWTH

SWAT utilizes a single plant growth model to simulate all types of land

covers. The model is able to differentiate between annual and perennial plants.

Annual plants grow from the planting date to the harvest date or until the

accumulated heat units equal the potential heat units for the plant. Perennial plants

maintain their root systems throughout the year, becoming dormant in the winter

months. They resume growth when the average daily air temperature exceeds the

minimum, or base, temperature required. The plant growth model is used to assess

removal of water and nutrients from the root zone, transpiration, and

biomass/yield production.

POTENTIAL GROWTH. The potential increase in plant biomass on a given
day is defined as the increase in biomass under ideal growing conditions. The
potential increase in biomass for a day is a function of intercepted energy and the
plant's efficiency in converting energy to biomass. Energy interception is
estimated as a function of solar radiation and the plant’s leaf area index.

POTENTIAL AND ACTUAL TRANSPIRATION. The process used to calculate
potential plant transpiration is described in the section on evapotranspiration.
Actual transpiration is a function of potential transpiration and soil water
availability.

NUTRIENT UPTAKE. Plant use of nitrogen and phosphorus are estimated
with a supply and demand approach where the daily plant nitrogen and
phosphorus demands are calculated as the difference between the actual
concentration of the element in the plant and the optimal concentration. The
optimal concentration of the elements varies with growth stage as described by
Jones (1983).
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GROWTH CONTRAINTS. Potential plant growth and yield are usually not
achieved due to constraints imposed by the environment. The model estimates
stresses caused by water, nutrients and temperature.

1.2.1.4 EROSION

Erosion and sediment yield are estimated for each HRU with the Modified

Universal Soil Loss Equation (MUSLE) (Williams, 1975). While the USLE uses

rainfall as an indicator of erosive energy, MUSLE uses the amount of runoff to

simulate erosion and sediment yield. The substitution results in a number of

benefits: the prediction accuracy of the model is increased, the need for a delivery

ratio is eliminated, and single storm estimates of sediment yields can be

calculated. The hydrology model supplies estimates of runoff volume and peak

runoff rate which, with the subbasin area, are used to calculate the runoff erosive

energy variable. The crop management factor is recalculated every day that runoff

occurs. It is a function of above-ground biomass, residue on the soil surface, and

the minimum C factor for the plant. Other factors of the erosion equation are

evaluated as described by Wischmeier and Smith (1978).

1.2.1.5 NUTRIENTS

SWAT tracks the movement and transformation of several forms of

nitrogen and phosphorus in the watershed. In the soil, transformation of nitrogen

from one form to another is governed by the nitrogen cycle as depicted in Figure

1.6. The transformation of phosphorus in the soil is controlled by the phosphorus

cycle shown in Figure 1.7. Nutrients may be introduced to the main channel and

transported downstream through surface runoff and lateral subsurface flow.

NITROGEN. The different processes modeled by SWAT in the HRUs and the
various pools of nitrogen in the soil are depicted in Figure 1.6. Plant use of
nitrogen is estimated using the supply and demand approach described in the
section on plant growth. In addition to plant use, nitrate and organic N may be
removed from the soil via mass flow of water. Amounts of NO3-N contained in
runoff, lateral flow and percolation are estimated as products of the volume of
water and the average concentration of nitrate in the layer. Organic N transport
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with sediment is calculated with a loading function developed by McElroy et al.
(1976) and modified by Williams and Hann (1978) for application to individual
runoff events. The loading function estimates the daily organic N runoff loss
based on the concentration of organic N in the top soil layer, the sediment yield,
and the enrichment ratio. The enrichment ratio is the concentration of organic N in
the sediment divided by that in the soil.

  Figure 1.6: Partitioning of Nitrogen in SWAT

PHOSPHORUS. The different processes modeled by SWAT in the HRUs
and the various pools of phosphorus in the soil are depicted in Figure 1.7. Plant
use of phosphorus is estimated using the supply and demand approach described
in the section on plant growth. In addition to plant use, soluble phosphorus and
organic P may be removed from the soil via mass flow of water. Phosphorus is not
a mobile nutrient and interaction between surface runoff with solution P in the top
10 mm of soil will not be complete. The amount of soluble P removed in runoff is
predicted using solution P concentration in the top 10 mm of soil, the runoff
volume and a partitioning factor. Sediment transport of P is simulated with a
loading function as described in organic N transport.
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 Figure 1.7: Partitioning of Phosphorus in SWAT

1.2.1.6 PESTICIDES

Although SWAT does not simulate stress on the growth of a plant due to

the presence of weeds, damaging insects, and other pests, pesticides may be

applied to an HRU to study the movement of the chemical in the watershed.

SWAT simulates pesticide movement into the stream network via surface runoff

(in solution and sorbed to sediment transported by the runoff), and into the soil

profile and aquifer by percolation (in solution). The equations used to model the

movement of pesticide in the land phase of the hydrologic cycle were adopted

from GLEAMS (Leonard et al., 1987). The movement of the pesticide is

controlled by its solubility, degradation half-life, and soil organic carbon

adsorption coefficient. Pesticide on plant foliage and in the soil degrade

exponentially according to the appropriate half-life. Pesticide transport by water

and sediment is calculated for each runoff event and pesticide leaching is

estimated for each soil layer when percolation occurs.
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         Figure 1.8 Pesticide fate and transport in SWAT

1.2.1.7 MANAGEMENT

SWAT allows the user to define management practices taking place in

every HRU. The user may define the beginning and the ending of the growing

season, specify timing and amounts of fertilizer, pesticide and irrigation

applications as well as timing of tillage operations. At the end of the growing

season, the biomass may be removed from the HRU as yield or placed on the

surface as residue.

In addition to these basic management practices, operations such as

grazing, automated fertilizer and water applications, and incorporation of every

conceivable management option for water use are available. The latest

improvement to land management is the incorporation of routines to calculate

sediment and nutrient loadings from urban areas.
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ROTATIONS. The dictionary defines a rotation as the growing of different crops
in succession in one field, usually in a regular sequence. A rotation in SWAT
refers to a change in management practices from one year to the next. There is no
limit to the number of years of different management operations specified in a
rotation. SWAT also does not limit the number of land cover/crops grown within
one year in the HRU. However, only one land cover can be growing at any one
time.

WATER USE. The two most typical uses of water are for application to
agricultural lands or use as a town's water supply. SWAT allows water to be
applied on an HRU from any water source within or outside the watershed. Water
may also be transferred between reservoirs, reaches and subbasins as well as
exported from the watershed.

1.2.2  ROUTING PHASE OF THE HYDROLOGIC CYCLE

Once SWAT determines the loadings of water, sediment, nutrients and

pesticides to the main channel, the loadings are routed through the stream network

of the watershed using a command structure similar to that of HYMO (Williams

and Hann, 1972). In addition to keeping track of mass flow in the channel, SWAT

models the transformation of chemicals in the stream and streambed. Figure 1.9

illustrates the different in-stream processes modeled by SWAT.

       Figure 1.9: In-stream processes modeled by SWAT
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1.2.2.1 ROUTING IN THE MAIN CHANNEL OR REACH

Routing in the main channel can be divided into four components: water,

sediment, nutrients and organic chemicals.

FLOOD ROUTING. As water flows downstream, a portion may be lost due to
evaporation and transmission through the bed of the channel. Another potential
loss is removal of water from the channel for agricultural or human use. Flow may
be supplemented by the fall of rain directly on the channel and/or addition of
water from point source discharges. Flow is routed through the channel using a
variable storage coefficient method developed by Williams (1969) or the
Muskingum routing method.

SEDIMENT ROUTING. The transport of sediment in the channel is
controlled by the simultaneous operation of two processes, deposition and
degradation. Previous versions of SWAT used stream power to estimate
deposition/degradation in the channels (Arnold et al, 1995). Bagnold (1977)
defined stream power as the product of water density, flow rate and water surface
slope. Williams (1980) used Bagnold’s definition of stream power to develop a
method for determining degradation as a function of channel slope and velocity.
In this version of SWAT, the equations have been simplified and the maximum
amount of sediment that can be transported from a reach segment is a function of
the peak channel velocity. Available stream power is used to reentrain loose and
deposited material until all of the material is removed. Excess stream power
causes bed degradation. Bed degradation is adjusted for stream bed erodibility and
cover.

NUTRIENT ROUTING. Nutrient transformations in the stream are
controlled by the in-stream water quality component of the model. The in-stream
kinetics used in SWAT for nutrient routing are adapted from QUAL2E (Brown
and Barnwell, 1987). The model tracks nutrients dissolved in the stream and
nutrients adsorbed to the sediment. Dissolved nutrients are transported with the
water while those sorbed to sediments are allowed to be deposited with the
sediment on the bed of the channel.

CHANNEL PESTICIDE ROUTING. While an unlimited number of pesticides
may be applied to the HRUs, only one pesticide may be routed through the
channel network of the watershed due to the complexity of the processes
simulated. As with the nutrients, the total pesticide load in the channel is
partitioned into dissolved and sediment-attached components. While the dissolved
pesticide is transported with water, the pesticide attached to sediment is affected
by sediment transport and deposition processes. Pesticide transformations in the
dissolved and sorbed phases are governed by first-order decay relationships. The
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major in-stream processes simulated by the model are settling, burial,
resuspension, volatilization, diffusion and transformation.

1.2.2.2 ROUTING IN THE RESERVOIR

The water balance for reservoirs includes inflow, outflow, rainfall on the

surface, evaporation, seepage from the reservoir bottom and diversions.

RESERVOIR OUTFLOW. The model offers three alternatives for estimating
outflow from the reservoir. The first option allows the user to input measured
outflow. The second option, designed for small, uncontrolled reservoirs, requires
the users to specify a water release rate. When the reservoir volume exceeds the
principle storage, the extra water is released at the specified rate. Volume
exceeding the emergency spillway is released within one day. The third option,
designed for larger, managed reservoirs, has the user specify monthly target
volumes for the reservoir.

SEDIMENT ROUTING. Sediment inflow may originate from transport
through the upstream reaches or from surface runoff within the subbasin. The
concentration of sediment in the reservoir is estimated using a simple continuity
equation based on volume and concentration of inflow, outflow, and water
retained in the reservoir. Settling of sediment in the reservoir is governed by an
equilibrium sediment concentration and the median sediment particle size. The
amount of sediment in the reservoir outflow is the product of the volume of water
flowing out of the reservoir and the suspended sediment concentration in the
reservoir at the time of release.

RESERVOIR NUTRIENTS. A simple model for nitrogen and phosphorus mass
balance was taken from Chapra (1997). The model assumes: 1) the lake is
completely mixed; 2) phosphorus is the limiting nutrient; and, 3) total phosphorus
is a measure of the lake trophic status. The first assumption ignores lake
stratification and intensification of phytoplankton in the epilimnon. The second
assumption is generally valid when non-point sources dominate and the third
assumption implies that a relationship exists between total phosphorus and
biomass. The phosphorus mass balance equation includes the concentration in the
lake, inflow, outflow and overall loss rate.

RESERVOIR PESTICIDES. The lake pesticide balance model is taken from
Chapra (1997) and assumes well mixed conditions. The system is partitioned into
a well mixed surface water layer underlain by a well mixed sediment layer. The
pesticide is partitioned into dissolved and particulate phases in both the water and
sediment layers. The major processes simulated by the model are loading,
outflow, transformation, volatilization, settling, diffusion, resuspension and
burial.
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